Properties

Label 1944.3755.324.m1
Order $ 2 \cdot 3 $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 35 & 13 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Ambient group ($G$) information

Description: $C_2\times C_3^3:C_6^2$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_6^2.C_3^3.C_2^5$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$S_3\times C_6^2$
Normal closure:$C_3^2:S_3$
Core:$C_3$
Minimal over-subgroups:$C_3\times S_3$$C_3\times S_3$$C_3:S_3$$C_3:S_3$$D_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$18$
Projective image$C_2\times C_3^3:C_6^2$