Subgroup ($H$) information
| Description: | $C_3^4$ |
| Order: | \(81\)\(\medspace = 3^{4} \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(3\) |
| Generators: |
$\left(\begin{array}{rr}
25 & 0 \\
0 & 25
\end{array}\right), \left(\begin{array}{rr}
25 & 4 \\
24 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 15 \\
27 & 10
\end{array}\right), \left(\begin{array}{rr}
1 & 12 \\
0 & 1
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_2\times C_3^3:C_6^2$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2\times C_6$ |
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.C_6^2.C_3^3.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2.\PSL(4,3).C_2$ |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| $W$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $8$ |
| Projective image | $C_2\times C_3^3:D_6$ |