Subgroup ($H$) information
| Description: | $C_6\times \He_3$ |
| Order: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
35 & 0 \\
0 & 35
\end{array}\right), \left(\begin{array}{rr}
1 & 12 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
25 & 24 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
25 & 4 \\
24 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 15 \\
27 & 10
\end{array}\right)$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_2\times C_3^3:C_6^2$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times C_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.C_6^2.C_3^3.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
| $\operatorname{res}(S)$ | $C_3.S_3^3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| $W$ | $C_3\times S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $9$ |
| Number of conjugacy classes in this autjugacy class | $9$ |
| Möbius function | $-2$ |
| Projective image | $C_3^3:C_6^2$ |