Properties

Label 1944.3755.12.d1
Order $ 2 \cdot 3^{4} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times \He_3$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 35 & 0 \\ 0 & 35 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 25 & 24 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 25 & 4 \\ 24 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 15 \\ 27 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_3^3:C_6^2$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_6^2.C_3^3.C_2^5$
$\operatorname{Aut}(H)$ $C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{res}(S)$$C_3.S_3^3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$C_3\times S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_6^2$
Normalizer:$C_2\times C_3^3:C_6^2$
Complements:$C_2\times C_6$ $C_2\times C_6$
Minimal over-subgroups:$C_3^4:C_6$$C_3^3:D_6$$C_3^2:C_6^2$
Maximal under-subgroups:$C_3\times \He_3$$C_3^2\times C_6$$C_3^2\times C_6$$C_2\times \He_3$$C_3^2\times C_6$$C_2\times \He_3$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$9$
Möbius function$-2$
Projective image$C_3^3:C_6^2$