Properties

Label 1944.3719.6.d1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2.C_6^2$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, b, e^{3}, d^{3}, d^{2}, e^{7}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_3^3:D_{18}$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.(C_3^3\times Q_8).C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_{18}:S_3^2$
Normal closure:$C_3^3.C_6^2$
Core:$C_3^2\times C_{18}$
Minimal over-subgroups:$C_3^3.C_6^2$$C_{18}:S_3^2$
Maximal under-subgroups:$C_3^2\times C_{18}$$C_3^2:C_{18}$$C_6\times C_{18}$$C_3^2\times D_6$$S_3\times C_{18}$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$1$
Projective image$C_3^3:D_{18}$