Subgroup ($H$) information
| Description: | $A_4\times \He_3$ |
| Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$a^{2}, e^{3}, d^{3}e^{3}, b, c, d^{2}$
|
| Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.
Ambient group ($G$) information
| Description: | $C_3^3:(C_3\times S_4)$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $S_3$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.C_6^2.S_3^3.C_2$ |
| $\operatorname{Aut}(H)$ | $C_3:S_3.(C_2\times C_6\times A_4).D_6$ |
| $\operatorname{res}(S)$ | $A_4:S_3^3$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| $W$ | $C_3^2:S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $9$ |
| Number of conjugacy classes in this autjugacy class | $9$ |
| Möbius function | $3$ |
| Projective image | $C_3^3:(C_3\times S_4)$ |