Subgroup ($H$) information
| Description: | $C_3$ |
| Order: | \(3\) |
| Index: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(3\) |
| Generators: |
$d^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $S_3\times \He_3:C_{12}$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $S_3\times C_3^2:C_{12}$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $\PSU(3,2).D_6^2.C_2$ |
| Outer Automorphisms: | $C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\PSU(3,2).S_3^3.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $S_3\times \He_3:C_{12}$ | ||||||||
| Normalizer: | $S_3\times \He_3:C_{12}$ | ||||||||
| Minimal over-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_6$ | $C_6$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $S_3\times C_3^2:C_{12}$ |