Properties

Label 1944.2732.4.c1
Order $ 2 \cdot 3^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9^2:C_6$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{3}d^{9}, d^{6}, c^{3}, b^{2}, c, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_9^2:D_6$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9^2.C_6^2.C_6.C_2^2$
$\operatorname{Aut}(H)$ $C_3^4.C_3^3.C_4.C_6.C_2$
$\operatorname{res}(S)$$C_3^5.\SOPlus(4,2)$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_9^2:D_6$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_9^2:D_6$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$C_2\times C_9^2:C_6$$C_9^2:D_6$
Maximal under-subgroups:$C_9^2:C_3$$C_9:D_9$$C_3^2:D_9$$C_3^2:D_9$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$2$
Projective image$C_2\times C_9^2:D_6$