Subgroup ($H$) information
| Description: | $C_9\times \He_3$ | 
| Order: | \(243\)\(\medspace = 3^{5} \) | 
| Index: | \(8\)\(\medspace = 2^{3} \) | 
| Exponent: | \(9\)\(\medspace = 3^{2} \) | 
| Generators: | 
		
    $b^{2}, cd^{2}, e$
    
    
    
         | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, a $3$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_2\times \He_3:D_{18}$ | 
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_2^3$ | 
| Order: | \(8\)\(\medspace = 2^{3} \) | 
| Exponent: | \(2\) | 
| Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.C_3^4.C_2^5$ | 
| $\operatorname{Aut}(H)$ | $C_3^5:(C_6\times \GL(2,3))$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_3\times S_3^3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) | 
| $W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $-8$ | 
| Projective image | $C_2\times \He_3:D_{18}$ |