Properties

Label 1944.2708.8.a1
Order $ 3^{5} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9\times \He_3$
Order: \(243\)\(\medspace = 3^{5} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $b^{2}, cd^{2}, e$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, a $3$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times \He_3:D_{18}$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_3^5:(C_6\times \GL(2,3))$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3\times S_3^3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_2\times \He_3:D_{18}$
Complements:$C_2^3$
Minimal over-subgroups:$C_{18}\times \He_3$$\He_3:C_{18}$$\He_3:D_9$$\He_3:D_9$
Maximal under-subgroups:$C_3\times \He_3$$C_3^2\times C_9$$C_3^2:C_9$$C_3^2\times C_9$$C_3^2:C_9$$C_3^2\times C_9$$C_3^2:C_9$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-8$
Projective image$C_2\times \He_3:D_{18}$