Subgroup ($H$) information
| Description: | $C_3\times C_6^2$ |
| Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
1 & 18 \\
18 & 1
\end{array}\right), \left(\begin{array}{rr}
25 & 24 \\
12 & 13
\end{array}\right), \left(\begin{array}{rr}
19 & 18 \\
0 & 19
\end{array}\right), \left(\begin{array}{rr}
1 & 24 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 12 \\
12 & 1
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, and abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).
Ambient group ($G$) information
| Description: | $C_3^4:S_4$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_3\times S_3$ |
| Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^3.S_3^2$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
| $\operatorname{Aut}(H)$ | $S_3\times \GL(3,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Möbius function | $-3$ |
| Projective image | $C_3^4:S_4$ |