Properties

Label 1944.2462.6.i1.a1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_3:A_4$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a^{2}c^{2}, d^{3}, c^{3}, bc^{4}, d^{4}e, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $(C_3\times \He_3):S_4$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_3:A_4.C_6.C_2$
$\operatorname{Aut}(H)$ $C_3\times C_6^2:S_3^2$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$\operatorname{res}(S)$$C_3^3:A_4$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3^3:A_4$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_6^2.C_3^3$
Normal closure:$C_6^2.C_3^3$
Core:$C_3^2.A_4$
Minimal over-subgroups:$C_6^2.C_3^3$
Maximal under-subgroups:$C_3^2.A_4$$C_2^2\times \He_3$$C_3^2\times A_4$$C_3^2.A_4$$C_3\wr C_3$
Autjugate subgroups:1944.2462.6.i1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$(C_3\times \He_3):S_4$