Subgroup ($H$) information
| Description: | $C_6$ | 
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Index: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $a^{3}, c^{2}$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $\He_3:(C_3\times S_4)$ | 
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.C_3^3.C_2^2$ | 
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) | 
| $\operatorname{res}(S)$ | $C_2$, of order \(2\) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
| Centralizer: | $C_6^2$ | ||
| Normalizer: | $C_6^2$ | ||
| Normal closure: | $\He_3:S_4$ | ||
| Core: | $C_1$ | ||
| Minimal over-subgroups: | $C_3\times C_6$ | $C_3\times S_3$ | $C_2\times C_6$ | 
| Maximal under-subgroups: | $C_3$ | $C_2$ | 
Other information
| Number of subgroups in this conjugacy class | $54$ | 
| Möbius function | $0$ | 
| Projective image | $\He_3:(C_3\times S_4)$ |