Properties

Label 1944.2443.27.e1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\wr C_2$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{9}, d^{2}, d^{3}, c^{2}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_9\times C_3^2:S_4$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2:C_3.C_3^2.C_2^3$
$\operatorname{Aut}(H)$ $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_6^2:C_{18}$
Normal closure:$C_3^2:S_4$
Core:$C_6^2$
Minimal over-subgroups:$C_3^2:S_4$$C_6^2:C_6$
Maximal under-subgroups:$C_6^2$$C_6\times S_3$$C_3:C_{12}$$C_3\times D_4$$C_3:D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_9\times C_3:S_4$