Subgroup ($H$) information
| Description: | $C_3^2:D_{18}$ |
| Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$a, d^{3}, de, b^{3}c, e, b^{2}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_3^2.S_3^3$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_3\times C_9):C_3^2:C_2^2\times S_3$ |
| $\operatorname{Aut}(H)$ | $C_{18}:C_6\times S_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| $\operatorname{res}(S)$ | $C_{18}:C_6\times S_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) |
| $W$ | $S_3\times D_{18}$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $1$ |
| Projective image | $C_3^2.S_3^3$ |