Properties

Label 1944.2345.6.j1.a1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_{18}$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, d^{3}, de, b^{3}c, e, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^2.S_3^3$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_9):C_3^2:C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_{18}:C_6\times S_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_{18}:C_6\times S_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$S_3\times D_{18}$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$D_9\times S_3^2$
Normal closure:$\He_3.S_3^2$
Core:$C_3^2:C_{18}$
Minimal over-subgroups:$\He_3.S_3^2$$D_9\times S_3^2$
Maximal under-subgroups:$C_3^2:C_{18}$$C_3^2\times D_9$$C_3^2:D_9$$C_3\times D_{18}$$C_3\times S_3^2$$S_3\times D_9$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3^2.S_3^3$