Properties

Label 1944.2342.648.a1.a1
Order $ 3 $
Index $ 2^{3} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rrrr} 2 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 0 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3^2.S_3^3$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.

Quotient group ($Q$) structure

Description: $C_3.S_3^3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times \He_3:D_4$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, supersolvable (hence solvable and monomial), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:(S_3\times D_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3^3:S_3^2$
Normalizer:$C_3^2.S_3^3$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_6$$S_3$$C_6$$C_6$$S_3$$S_3$$S_3$
Maximal under-subgroups:$C_1$
Autjugate subgroups:1944.2342.648.a1.b1

Other information

Möbius function$0$
Projective image$C_3^2.S_3^3$