Subgroup ($H$) information
Description: | $C_3$ |
Order: | \(3\) |
Index: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Exponent: | \(3\) |
Generators: |
$\left(\begin{array}{rrrr}
2 & 2 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 2 & 1 & 1 \\
2 & 1 & 0 & 0
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_3^2.S_3^3$ |
Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.
Quotient group ($Q$) structure
Description: | $C_3.S_3^3$ |
Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3\times \He_3:D_4$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4:(S_3\times D_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $C_3^2.S_3^3$ |