Properties

Label 19360.h.880.d1.a1
Order $ 2 \cdot 11 $
Index $ 2^{4} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Index: \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $d^{22}, cd^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_{11}\times C_{44}$
Normalizer:$C_{44}:F_{11}$
Normal closure:$C_{11}\times C_{22}$
Core:$C_2$
Minimal over-subgroups:$C_{11}\times C_{22}$$C_{11}:C_{10}$$D_{22}$$C_{44}$$C_{11}:C_4$
Maximal under-subgroups:$C_{11}$$C_2$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_2\times D_{11}^2:C_{10}$