Properties

Label 19360.h.8.f1.b1
Order $ 2^{2} \cdot 5 \cdot 11^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{11}:F_{11}$
Order: \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}, a^{2}, cd^{36}, b^{2}cd^{11}, d^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $F_{11}\wr C_2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
$W$$D_{11}:F_{11}$, of order \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{22}:F_{11}$
Normal closure:$D_{44}:F_{11}$
Core:$C_{11}:F_{11}$
Minimal over-subgroups:$D_{22}:F_{11}$
Maximal under-subgroups:$C_{11}:F_{11}$$C_{11}:F_{11}$$C_{11}:F_{11}$$D_{11}^2$$C_2\times F_{11}$$C_2\times F_{11}$
Autjugate subgroups:19360.h.8.f1.a1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_{11}^2:(C_{10}\times \SD_{16})$