Properties

Label 19360.h.5.a1.a1
Order $ 2^{5} \cdot 11^{2} $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_{11}\times C_{44}).D_4$
Order: \(3872\)\(\medspace = 2^{5} \cdot 11^{2} \)
Index: \(5\)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $a^{5}, c, d^{11}, b^{2}c, b, d^{4}, d^{22}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_{11}^2.C_2^3.C_5.C_2^5$
$W$$C_2\times D_{11}^2:C_{10}$, of order \(9680\)\(\medspace = 2^{4} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{11}^2:(C_{10}\times \SD_{16})$
Complements:$C_5$
Minimal over-subgroups:$C_{11}^2:(C_{10}\times \SD_{16})$
Maximal under-subgroups:$C_{11}^2:\SD_{16}$$C_{11}^2:\SD_{16}$$C_{11}^2:\SD_{16}$$C_{11}^2:\SD_{16}$$C_{44}:D_{22}$$C_{44}.D_{22}$$C_{11}^2:(C_2\times C_8)$$C_2\times \SD_{16}$

Other information

Möbius function$-1$
Projective image$C_2\times D_{11}^2:C_{10}$