Properties

Label 19360.h.4.a1.a1
Order $ 2^{3} \cdot 5 \cdot 11^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{22}:F_{11}$
Order: \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}, d^{4}, a^{2}, d^{22}, b^{2}c, cd^{36}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $F_{11}^2:D_4$, of order \(96800\)\(\medspace = 2^{5} \cdot 5^{2} \cdot 11^{2} \)
$W$$C_2\times D_{11}^2:C_{10}$, of order \(9680\)\(\medspace = 2^{4} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{11}^2:(C_{10}\times \SD_{16})$
Minimal over-subgroups:$C_{11}^2:(C_5\times \SD_{16})$$C_{11}^2:(C_5\times \SD_{16})$$D_{44}:F_{11}$
Maximal under-subgroups:$C_{11}^2:C_{20}$$C_{22}:F_{11}$$D_{22}:D_{11}$$D_{22}:C_{10}$
Autjugate subgroups:19360.h.4.a1.b1

Other information

Möbius function$2$
Projective image$C_2\times D_{11}^2:C_{10}$