Properties

Label 19360.h.20.b1.a1
Order $ 2^{3} \cdot 11^{2} $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}:D_{11}$
Order: \(968\)\(\medspace = 2^{3} \cdot 11^{2} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $d^{11}, d^{22}, cd^{20}, b^{2}c, d^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times C_{11}^2.C_{10}.\PSL(2,11).C_2$
$W$$D_{11}^2:C_{10}$, of order \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{11}^2:(C_{10}\times \SD_{16})$
Minimal over-subgroups:$C_{44}:F_{11}$$C_{44}:D_{22}$$C_{44}.D_{22}$$C_{11}^2:(C_2\times C_8)$
Maximal under-subgroups:$C_{11}:D_{22}$$C_{11}\times C_{44}$$C_{11}^2:C_4$$C_4\times D_{11}$$C_4\times D_{11}$$C_4\times D_{11}$$C_4\times D_{11}$

Other information

Möbius function$-2$
Projective image$C_2\times D_{11}^2:C_{10}$