Properties

Label 19360.h.1210.c1.a1
Order $ 2^{4} $
Index $ 2 \cdot 5 \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times Q_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{5}bd^{30}, d^{11}, b^{2}c$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{10}\times \SD_{16}$
Normal closure:$C_{44}.D_{22}$
Core:$C_4$
Minimal over-subgroups:$Q_8\times D_{11}$$Q_8\times C_{10}$$C_2\times \SD_{16}$
Maximal under-subgroups:$C_2\times C_4$$C_2\times C_4$$Q_8$$Q_8$$Q_8$

Other information

Number of subgroups in this conjugacy class$121$
Möbius function$-1$
Projective image$C_2\times D_{11}^2:C_{10}$