Properties

Label 193536.b.21._.E
Order $ 2^{10} \cdot 3^{2} $
Index $ 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6.D_6^2$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Index: \(21\)\(\medspace = 3 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,5,7), (1,2), (4,6,7,5)(8,12)(9,15)(10,14)(11,13), (1,3,2)(4,5,6,7)(8,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^5.(S_3^2\times \GL(3,2))$
Order: \(193536\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(S_3\times S_4).C_2^4.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_5^4:D_4:C_2$, of order \(221184\)\(\medspace = 2^{13} \cdot 3^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$21$
Möbius function not computed
Projective image not computed