Subgroup ($H$) information
| Description: | $C_2^6.D_6^2$ |
| Order: | \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) |
| Index: | \(21\)\(\medspace = 3 \cdot 7 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(4,5,7), (1,2), (4,6,7,5)(8,12)(9,15)(10,14)(11,13), (1,3,2)(4,5,6,7)(8,14) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $C_2^5.(S_3^2\times \GL(3,2))$ |
| Order: | \(193536\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(S_3\times S_4).C_2^4.\PSL(2,7)$ |
| $\operatorname{Aut}(H)$ | $C_5^4:D_4:C_2$, of order \(221184\)\(\medspace = 2^{13} \cdot 3^{3} \) |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Normal closure: | not computed |
| Core: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Number of subgroups in this conjugacy class | $21$ |
| Möbius function | not computed |
| Projective image | not computed |