Properties

Label 1926.4.3.a1.a1
Order $ 2 \cdot 3 \cdot 107 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{642}$
Order: \(642\)\(\medspace = 2 \cdot 3 \cdot 107 \)
Index: \(3\)
Exponent: \(642\)\(\medspace = 2 \cdot 3 \cdot 107 \)
Generators: $a^{963}, a^{1284}, a^{18}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,107$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{1926}$
Order: \(1926\)\(\medspace = 2 \cdot 3^{2} \cdot 107 \)
Exponent: \(1926\)\(\medspace = 2 \cdot 3^{2} \cdot 107 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,107$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{318}$, of order \(636\)\(\medspace = 2^{2} \cdot 3 \cdot 53 \)
$\operatorname{Aut}(H)$ $C_2\times C_{106}$, of order \(212\)\(\medspace = 2^{2} \cdot 53 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{106}$, of order \(212\)\(\medspace = 2^{2} \cdot 53 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{1926}$
Normalizer:$C_{1926}$
Minimal over-subgroups:$C_{1926}$
Maximal under-subgroups:$C_{321}$$C_{214}$$C_6$

Other information

Möbius function$-1$
Projective image$C_3$