Subgroup ($H$) information
Description: | $D_{13}\times C_{37}$ |
Order: | \(962\)\(\medspace = 2 \cdot 13 \cdot 37 \) |
Index: | \(2\) |
Exponent: | \(962\)\(\medspace = 2 \cdot 13 \cdot 37 \) |
Generators: |
$a, c^{13}, c^{222}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $D_{13}\times D_{37}$ |
Order: | \(1924\)\(\medspace = 2^{2} \cdot 13 \cdot 37 \) |
Exponent: | \(962\)\(\medspace = 2 \cdot 13 \cdot 37 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{481}.C_3.C_{12}^2$ |
$\operatorname{Aut}(H)$ | $C_{39}.C_{12}^2$ |
$\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(5616\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 13 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(37\) |
$W$ | $D_{26}$, of order \(52\)\(\medspace = 2^{2} \cdot 13 \) |
Related subgroups
Centralizer: | $C_{37}$ | ||
Normalizer: | $D_{13}\times D_{37}$ | ||
Complements: | $C_2$ $C_2$ | ||
Minimal over-subgroups: | $D_{13}\times D_{37}$ | ||
Maximal under-subgroups: | $C_{481}$ | $C_{74}$ | $D_{13}$ |
Other information
Möbius function | $-1$ |
Projective image | $D_{13}\times D_{37}$ |