Properties

Label 1920.240996.640.a1.a1
Order $ 3 $
Index $ 2^{7} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(640\)\(\medspace = 2^{7} \cdot 5 \)
Exponent: \(3\)
Generators: $\langle(2,8,7)(3,6,9)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_2^4:S_5$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:S_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times D_4$
Normalizer:$S_3\times D_4$
Normal closure:$C_2^4:A_5$
Core:$C_1$
Minimal over-subgroups:$A_4$$A_4$$C_6$$C_6$$C_6$$S_3$$S_3$$S_3$$S_3$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$40$
Möbius function$8$
Projective image$C_2^4:S_5$