Properties

Label 1920.240996.20.c1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times S_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,6)(5,10), (2,6)(3,9,7,8), (1,4)(5,10), (2,5)(3,7)(6,10)(8,9), (1,4)(3,7)(5,10)(8,9), (1,2,5)(3,7)(4,6,10)(8,9)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^4:S_5$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 20T223.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:S_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$D_4\times S_4$
Normal closure:$C_2^4:S_5$
Core:$C_1$
Minimal over-subgroups:$D_4\times S_4$
Maximal under-subgroups:$C_2\times S_4$$C_4\times A_4$$A_4:C_4$$C_4\times D_4$$C_4\times S_3$

Other information

Number of subgroups in this conjugacy class$10$
Möbius function$0$
Projective image$C_2^4:S_5$