Subgroup ($H$) information
Description: | $C_4\times S_4$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Index: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(2,6)(5,10), (2,6)(3,9,7,8), (1,4)(5,10), (2,5)(3,7)(6,10)(8,9), (1,4)(3,7)(5,10)(8,9), (1,2,5)(3,7)(4,6,10)(8,9)\rangle$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_2^4:S_5$ |
Order: | \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $1$ |
The ambient group is nonabelian, nonsolvable, and rational.
Quotient set structure
Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 20T223.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4:S_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $10$ |
Möbius function | $0$ |
Projective image | $C_2^4:S_5$ |