Properties

Label 1920.240594.10.d1
Order $ 2^{6} \cdot 3 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:C_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(6,9)(7,8)(10,11), (1,3)(2,5)(6,8)(7,9), (6,7,9,8), (1,3,5), (6,9)(7,8), (7,8), (1,2)(3,5)(7,8)(10,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_2\times D_4\times S_5$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.C_2^3.S_5$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$C_2\wr C_2^2\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$\GL(2,\mathbb{Z}/4):C_2^2$
Normal closure:$C_2\times D_4\times A_5$
Core:$C_2\times D_4$
Minimal over-subgroups:$C_2\times D_4\times A_5$$\GL(2,\mathbb{Z}/4):C_2^2$
Maximal under-subgroups:$C_2^3\times A_4$$C_2^3:C_{12}$$D_4\times A_4$$D_4\times C_2^3$$C_6\times D_4$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^2\times S_5$