Properties

Label 1920.240593.120.a1
Order $ 2^{4} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(6,7,8,9)(10,12)(11,13), (6,8)(7,9), (10,11)(12,13), (10,12)(11,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, a semidirect factor, abelian (hence metabelian and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_2^2\times C_4:S_5$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $S_5$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $1$

The quotient is nonabelian, almost simple, nonsolvable, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.D_6.S_5$
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\times C_2^2\times A_5$
Normalizer:$C_2^2\times C_4:S_5$
Complements:$S_5$
Minimal over-subgroups:$C_2^2\times C_{20}$$C_2^2\times C_{12}$$C_2^3\times C_4$$C_2^2\times D_4$
Maximal under-subgroups:$C_2\times C_4$$C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times S_5$