Properties

Label 192.975.2.b1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:Q_8$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 12 & 3 \\ 3 & 16 \end{array}\right), \left(\begin{array}{rr} 15 & 0 \\ 14 & 15 \end{array}\right), \left(\begin{array}{rr} 1 & 14 \\ 14 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 8 & 13 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 15 & 7 \\ 21 & 8 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $A_4:Q_{16}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{Aut}(H)$ $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$A_4:Q_{16}$
Minimal over-subgroups:$A_4:Q_{16}$
Maximal under-subgroups:$C_4\times A_4$$A_4:C_4$$C_2^2:Q_8$$C_3:Q_8$

Other information

Möbius function$-1$
Projective image$\GL(2,\mathbb{Z}/4)$