Subgroup ($H$) information
| Description: | $C_2\times C_{12}$ |
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a^{2}b^{6}c^{3}, c, b^{4}, c^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{12}.C_4^2$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $Q_8$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times D_4^2:D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| $\operatorname{Aut}(H)$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_2\times C_4\times C_{12}$ | |||
| Normalizer: | $C_{12}.C_4^2$ | |||
| Minimal over-subgroups: | $C_2^2\times C_{12}$ | |||
| Maximal under-subgroups: | $C_2\times C_6$ | $C_{12}$ | $C_{12}$ | $C_2\times C_4$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_{12}:C_4$ |