Properties

Label 192.74.2.a1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8.D_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(2\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, c^{4}, c^{6}, b^{2}, c^{9}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_8.D_{12}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times D_4\times D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_3:D_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_8$
Normalizer:$C_8.D_{12}$
Minimal over-subgroups:$C_8.D_{12}$
Maximal under-subgroups:$D_{12}:C_2$$C_2\times C_{24}$$C_3:\OD_{16}$$S_3\times C_8$$C_{24}:C_2$$\OD_{16}:C_2$

Other information

Möbius function$-1$
Projective image$C_3:D_4$