Subgroup ($H$) information
Description: | $C_4:C_4$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$abc, b^{12}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $D_{24}:C_4$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{24}:(C_2^4\times C_4)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \) |
$\operatorname{res}(S)$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Centralizer: | $C_2^2$ | |
Normalizer: | $C_8:C_4$ | |
Normal closure: | $C_{24}:C_4$ | |
Core: | $C_2\times C_4$ | |
Minimal over-subgroups: | $C_{12}:C_4$ | $C_8:C_4$ |
Maximal under-subgroups: | $C_2\times C_4$ | $C_2\times C_4$ |
Other information
Number of subgroups in this conjugacy class | $6$ |
Möbius function | $0$ |
Projective image | $D_{24}$ |