Subgroup ($H$) information
Description: | $C_{48}$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Generators: |
$a^{2}b^{3}, b^{24}, b^{16}, b^{6}, b^{12}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{48}:C_4$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Quotient group ($Q$) structure
Description: | $C_4$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^2:C_2^2\times D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \) |
$\operatorname{res}(S)$ | $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2\times C_{48}$ | |
Normalizer: | $C_{48}:C_4$ | |
Complements: | $C_4$ $C_4$ | |
Minimal over-subgroups: | $C_2\times C_{48}$ | |
Maximal under-subgroups: | $C_{24}$ | $C_{16}$ |
Autjugate subgroups: | 192.61.4.e1.a1 |
Other information
Möbius function | $0$ |
Projective image | $C_6:C_4$ |