Subgroup ($H$) information
| Description: | $C_3:C_4$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$ab^{4}, a^{2}b^{24}, b^{16}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{48}:C_4$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4^2:C_2^2\times D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| $\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
| Centralizer: | $C_2\times C_8$ | |
| Normalizer: | $C_{24}:C_4$ | |
| Normal closure: | $C_6:C_4$ | |
| Core: | $C_6$ | |
| Minimal over-subgroups: | $C_6:C_4$ | |
| Maximal under-subgroups: | $C_6$ | $C_4$ |
| Autjugate subgroups: | 192.61.16.d1.a1 |
Other information
| Number of subgroups in this conjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $C_{48}:C_2$ |