Subgroup ($H$) information
| Description: | $C_2^2:C_{12}$ | 
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Index: | \(4\)\(\medspace = 2^{2} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $a, c, d^{3}, d^{2}, b^{4}$ | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $D_{12}.D_4$ | 
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^7:D_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) | 
| $\operatorname{Aut}(H)$ | $C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \) | 
| $\operatorname{res}(S)$ | $C_2^5$, of order \(32\)\(\medspace = 2^{5} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ | 
| Möbius function | not computed | 
| Projective image | $C_6:D_4$ | 
