Subgroup ($H$) information
Description: | $C_4^2$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$a, c^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_4^2.D_6$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_3:C_4$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:(C_2\times C_2^6.C_2^3)$ |
$\operatorname{Aut}(H)$ | $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2\times C_4\times C_{12}$ | ||
Normalizer: | $C_4^2.D_6$ | ||
Minimal over-subgroups: | $C_4\times C_{12}$ | $C_2\times C_4^2$ | |
Maximal under-subgroups: | $C_2\times C_4$ | $C_2\times C_4$ | $C_2\times C_4$ |
Other information
Möbius function | not computed |
Projective image | $C_6.C_2^3$ |