Properties

Label 192.462.24.i1.b1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $abc, c^{12}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $C_{16}:D_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4.D_4^2:D_6$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times Q_{16}$
Normal closure:$C_3:Q_{16}$
Core:$C_4$
Minimal over-subgroups:$C_3:Q_8$$C_2\times Q_8$$Q_{16}$$Q_{16}$
Maximal under-subgroups:$C_4$$C_4$
Autjugate subgroups:192.462.24.i1.a1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function not computed
Projective image$C_2\times D_{24}$