Properties

Label 192.151.2.b1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{48}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(2\)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $a^{2}, b^{24}, b^{12}, b^{3}, b^{16}, b^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, maximal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_4\times C_{48}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.D_4$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{Aut}(H)$ $D_4:C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$D_4:C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4\times C_{48}$
Normalizer:$C_4\times C_{48}$
Minimal over-subgroups:$C_4\times C_{48}$
Maximal under-subgroups:$C_2\times C_{24}$$C_{48}$$C_{48}$$C_2\times C_{16}$
Autjugate subgroups:192.151.2.b1.b1

Other information

Möbius function$-1$
Projective image$C_2$