Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(2\) |
Generators: |
$a$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $C_2^2\times C_4\times C_{12}$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Quotient group ($Q$) structure
Description: | $C_2\times C_4\times C_{12}$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_2^7:S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
Outer Automorphisms: | $C_2^7:S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^9.\POPlus(4,3)$, of order \(294912\)\(\medspace = 2^{15} \cdot 3^{2} \) |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$\operatorname{res}(S)$ | $C_1$, of order $1$ |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(24576\)\(\medspace = 2^{13} \cdot 3 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_2^2\times C_4\times C_{12}$ | ||
Normalizer: | $C_2^2\times C_4\times C_{12}$ | ||
Complements: | $C_2\times C_4\times C_{12}$ | ||
Minimal over-subgroups: | $C_6$ | $C_2^2$ | $C_2^2$ |
Maximal under-subgroups: | $C_1$ |
Other information
Number of subgroups in this autjugacy class | $12$ |
Number of conjugacy classes in this autjugacy class | $12$ |
Möbius function | $0$ |
Projective image | $C_2\times C_4\times C_{12}$ |