Properties

Label 192.1389.2.g1
Order $ 2^{5} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac, d^{4}, d^{6}, bc, cd^{11}, c^{2}d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{12}):D_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^8.C_2^4)$
$\operatorname{Aut}(H)$ $S_3\times C_2^5:D_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2\times C_{12}):D_4$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$(C_2\times C_{12}):D_4$
Maximal under-subgroups:$D_6:C_4$$C_2\times D_{12}$$C_6\times Q_8$$C_{12}:C_4$$C_4^2:C_2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed