Properties

Label 192.1276.4.k1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{4}, b, c^{3}d^{3}, c^{2}d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Ambient group ($G$) information

Description: $C_3:D_4^2$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times C_2^2\wr D_4$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{Aut}(H)$ $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4\times D_6$
Normal closure:$D_4\times D_6$
Core:$D_{12}$
Minimal over-subgroups:$D_4\times D_6$
Maximal under-subgroups:$D_{12}$$C_3:D_4$$C_2\times D_6$$C_3\times D_4$$C_4\times S_3$$C_2\times D_4$

Other information

Number of subgroups in this autjugacy class$32$
Number of conjugacy classes in this autjugacy class$16$
Möbius function$0$
Projective image$D_4\times D_6$