Properties

Label 18954.b.702.B
Order $ 3^{3} $
Index $ 2 \cdot 3^{3} \cdot 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(702\)\(\medspace = 2 \cdot 3^{3} \cdot 13 \)
Exponent: \(3\)
Generators: $be^{2}fg^{2}, cefg^{2}, de^{2}f^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^3.F_{27}$
Order: \(18954\)\(\medspace = 2 \cdot 3^{6} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $F_{27}$
Order: \(702\)\(\medspace = 2 \cdot 3^{3} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Automorphism Group: $F_{27}:C_3$, of order \(2106\)\(\medspace = 2 \cdot 3^{4} \cdot 13 \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_{13}^2.C_6.C_2$
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$W$$C_{26}$, of order \(26\)\(\medspace = 2 \cdot 13 \)

Related subgroups

Centralizer:$C_3^6$
Normalizer:$C_3^3.F_{27}$
Minimal over-subgroups:$C_3^3:C_{13}$$C_3^4$$C_3^2:S_3$
Maximal under-subgroups:$C_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-27$
Projective image$C_3^3.F_{27}$