Properties

Label 186624.ej.18._.CY
Order $ 2^{7} \cdot 3^{4} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.(S_3\times D_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ab^{3}c^{4}d^{10}g^{4}, c^{2}g^{4}, d^{3}e^{2}g^{2}, d^{6}e^{6}, e^{4}g^{4}, b^{3}c^{3}, e^{3}f^{2}g, c^{4}d^{4}fg^{2}, d^{6}, g^{2}, c^{3}g^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^4.C_4^2:D_6^2$
Order: \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_{12}^2.C_6.C_2^6$
$\operatorname{Aut}(H)$ $C_3^4.C_2^6.C_2^6$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$9$
Möbius function not computed
Projective image not computed