Subgroup ($H$) information
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(465\)\(\medspace = 3 \cdot 5 \cdot 31 \) |
| Exponent: | \(2\) |
| Generators: |
$b^{5}c^{31}, c^{31}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $A_4\times C_{155}$ |
| Order: | \(1860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 31 \) |
| Exponent: | \(930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 31 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_{465}$ |
| Order: | \(465\)\(\medspace = 3 \cdot 5 \cdot 31 \) |
| Exponent: | \(465\)\(\medspace = 3 \cdot 5 \cdot 31 \) |
| Automorphism Group: | $C_2^2\times C_{60}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| Outer Automorphisms: | $C_2^2\times C_{60}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5,31$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_{60}\times S_4$ |
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $W$ | $C_3$, of order \(3\) |
Related subgroups
| Centralizer: | $C_2\times C_{310}$ | ||
| Normalizer: | $A_4\times C_{155}$ | ||
| Complements: | $C_{465}$ | ||
| Minimal over-subgroups: | $C_2\times C_{62}$ | $C_2\times C_{10}$ | $A_4$ |
| Maximal under-subgroups: | $C_2$ |
Other information
| Möbius function | $-1$ |
| Projective image | $A_4\times C_{155}$ |