Properties

Label 1860.47.465.a1.a1
Order $ 2^{2} $
Index $ 3 \cdot 5 \cdot 31 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(465\)\(\medspace = 3 \cdot 5 \cdot 31 \)
Exponent: \(2\)
Generators: $b^{5}c^{31}, c^{31}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $A_4\times C_{155}$
Order: \(1860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Exponent: \(930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 31 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{465}$
Order: \(465\)\(\medspace = 3 \cdot 5 \cdot 31 \)
Exponent: \(465\)\(\medspace = 3 \cdot 5 \cdot 31 \)
Automorphism Group: $C_2^2\times C_{60}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2^2\times C_{60}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5,31$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{60}\times S_4$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_2\times C_{310}$
Normalizer:$A_4\times C_{155}$
Complements:$C_{465}$
Minimal over-subgroups:$C_2\times C_{62}$$C_2\times C_{10}$$A_4$
Maximal under-subgroups:$C_2$

Other information

Möbius function$-1$
Projective image$A_4\times C_{155}$