Subgroup ($H$) information
Description: | $C_{29}:Q_8$ |
Order: | \(232\)\(\medspace = 2^{3} \cdot 29 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(116\)\(\medspace = 2^{2} \cdot 29 \) |
Generators: |
$a, b^{24}, c, b^{16}$
|
Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{29}:Q_{64}$ |
Order: | \(1856\)\(\medspace = 2^{6} \cdot 29 \) |
Exponent: | \(928\)\(\medspace = 2^{5} \cdot 29 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{232}.C_{14}.C_2^3.C_2^3$ |
$\operatorname{Aut}(H)$ | $D_4\times F_{29}$, of order \(6496\)\(\medspace = 2^{5} \cdot 7 \cdot 29 \) |
$\operatorname{res}(S)$ | $D_4\times F_{29}$, of order \(6496\)\(\medspace = 2^{5} \cdot 7 \cdot 29 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $D_{116}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \) |
Related subgroups
Centralizer: | $C_2$ | ||
Normalizer: | $C_{29}:Q_{16}$ | ||
Normal closure: | $C_{29}:Q_{32}$ | ||
Core: | $C_{116}$ | ||
Minimal over-subgroups: | $C_{29}:Q_{16}$ | ||
Maximal under-subgroups: | $C_{116}$ | $C_{29}:C_4$ | $Q_8$ |
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $C_{29}:D_{16}$ |