Properties

Label 1856.389.2.a1.a1
Order $ 2^{5} \cdot 29 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{29}\times Q_{32}$
Order: \(928\)\(\medspace = 2^{5} \cdot 29 \)
Index: \(2\)
Exponent: \(464\)\(\medspace = 2^{4} \cdot 29 \)
Generators: $b^{4}, b^{24}, b^{16}, c, b^{30}, ab$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{29}:Q_{64}$
Order: \(1856\)\(\medspace = 2^{6} \cdot 29 \)
Exponent: \(928\)\(\medspace = 2^{5} \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{232}.C_{14}.C_2^3.C_2^3$
$\operatorname{Aut}(H)$ $C_{28}\times D_8:C_4.C_2$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(3584\)\(\medspace = 2^{9} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(58\)\(\medspace = 2 \cdot 29 \)
$W$$D_{16}$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_{58}$
Normalizer:$C_{29}:Q_{64}$
Minimal over-subgroups:$C_{29}:Q_{64}$
Maximal under-subgroups:$C_{464}$$Q_{16}\times C_{29}$$Q_{32}$

Other information

Möbius function$-1$
Projective image$C_{29}:D_{16}$