Properties

Label 1850.5.5.a1.e1
Order $ 2 \cdot 5 \cdot 37 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_{37}$
Order: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Index: \(5\)
Exponent: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Generators: $a^{5}, a^{2}b^{148}, b^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_5^2\times D_{37}$
Order: \(1850\)\(\medspace = 2 \cdot 5^{2} \cdot 37 \)
Exponent: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{37}.(C_4\times C_{36}).S_5$
$\operatorname{Aut}(H)$ $C_4\times F_{37}$, of order \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \)
$\operatorname{res}(S)$$C_4\times F_{37}$, of order \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$D_{37}$, of order \(74\)\(\medspace = 2 \cdot 37 \)

Related subgroups

Centralizer:$C_5^2$
Normalizer:$C_5^2\times D_{37}$
Complements:$C_5$ $C_5$ $C_5$ $C_5$ $C_5$
Minimal over-subgroups:$C_5^2\times D_{37}$
Maximal under-subgroups:$C_{185}$$D_{37}$$C_{10}$
Autjugate subgroups:1850.5.5.a1.a11850.5.5.a1.b11850.5.5.a1.c11850.5.5.a1.d11850.5.5.a1.f1

Other information

Möbius function$-1$
Projective image$C_5\times D_{37}$