Subgroup ($H$) information
| Description: | $F_7$ | 
| Order: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) | 
| Index: | \(44\)\(\medspace = 2^{2} \cdot 11 \) | 
| Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) | 
| Generators: | 
		
    $a^{3}, b^{88}, a^{2}$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).
Ambient group ($G$) information
| Description: | $C_{28}:C_{66}$ | 
| Order: | \(1848\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 11 \) | 
| Exponent: | \(924\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{70}.(C_2^3\times C_6)$ | 
| $\operatorname{Aut}(H)$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) | 
| $\operatorname{res}(S)$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(20\)\(\medspace = 2^{2} \cdot 5 \) | 
| $W$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ | 
| Möbius function | $0$ | 
| Projective image | $C_{28}:C_{66}$ |