Properties

Label 18432.b.1536.A
Order $ 2^{2} \cdot 3 $
Index $ 2^{9} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{72}b^{48}, a^{32}b^{64}, a^{48}b^{96}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{96}\times C_{192}$
Order: \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Quotient group ($Q$) structure

Description: $C_8\times C_{192}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Automorphism Group: $C_2.C_4^3.C_2^6.C_2$
Outer Automorphisms: $C_2.C_4^3.C_2^6.C_2$
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(25165824\)\(\medspace = 2^{23} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{96}\times C_{192}$
Normalizer:$C_{96}\times C_{192}$
Minimal over-subgroups:$C_3\times C_{12}$$C_{24}$$C_2\times C_{12}$
Maximal under-subgroups:$C_6$$C_4$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$16$
Möbius function$0$
Projective image$C_8\times C_{192}$