Properties

Label 1836.70.54.b1.a1
Order $ 2 \cdot 17 $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{17}$
Order: \(34\)\(\medspace = 2 \cdot 17 \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Generators: $a^{3}b, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_3^2:D_{102}$
Order: \(1836\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 17 \)
Exponent: \(102\)\(\medspace = 2 \cdot 3 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_{51}).C_{48}.C_2^3$
$\operatorname{Aut}(H)$ $F_{17}$, of order \(272\)\(\medspace = 2^{4} \cdot 17 \)
$\operatorname{res}(S)$$F_{17}$, of order \(272\)\(\medspace = 2^{4} \cdot 17 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_{17}$, of order \(34\)\(\medspace = 2 \cdot 17 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times D_{34}$
Normal closure:$C_3:D_{51}$
Core:$C_{17}$
Minimal over-subgroups:$C_3\times D_{17}$$D_{51}$$D_{51}$$D_{34}$
Maximal under-subgroups:$C_{17}$$C_2$
Autjugate subgroups:1836.70.54.b1.b1

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$C_3^2:D_{102}$