Properties

Label 1836.70.54.a1.a1
Order $ 2 \cdot 17 $
Index $ 2 \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{34}$
Order: \(34\)\(\medspace = 2 \cdot 17 \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Generators: $b^{3}, c^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3^2:D_{102}$
Order: \(1836\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 17 \)
Exponent: \(102\)\(\medspace = 2 \cdot 3 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_3^2:C_6$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_{51}).C_{48}.C_2^3$
$\operatorname{Aut}(H)$ $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3672\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 17 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$\He_3\times C_{34}$
Normalizer:$C_3^2:D_{102}$
Complements:$C_3^2:C_6$ $C_3^2:C_6$
Minimal over-subgroups:$C_{102}$$C_{102}$$C_{102}$$C_{102}$$D_{34}$
Maximal under-subgroups:$C_{17}$$C_2$

Other information

Möbius function$0$
Projective image$C_3^2:D_{51}$