Subgroup ($H$) information
| Description: | $C_{34}$ |
| Order: | \(34\)\(\medspace = 2 \cdot 17 \) |
| Index: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Exponent: | \(34\)\(\medspace = 2 \cdot 17 \) |
| Generators: |
$b^{3}, c^{3}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_3^2:D_{102}$ |
| Order: | \(1836\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 17 \) |
| Exponent: | \(102\)\(\medspace = 2 \cdot 3 \cdot 17 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_3^2:C_6$ |
| Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_3\times C_{51}).C_{48}.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3672\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 17 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $C_3^2:D_{51}$ |